Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations

نویسنده

  • Samuel Forest
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strain G R a D I E N T Plasticity: Theory

-Dislocation theory is used to invoke a strain gradient theory of rate independent plasticity. Hardening is assumed to result from the accumulation of both randomly stored and geometrically necessary dislocations. The density of the geometrically necessary dislocations scales with the gradient of plastic strain. A deformation theory of plasticity is introduced to represent in a phenomenological...

متن کامل

Gradient Theory for Plasticity via Homogenization of Discrete Dislocations

In this paper, we deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal in exam, so that the mathematical formulation will involve a two dimensional variational problem. The dislocations are introduced as point topological defects of the strain fields, for which we compute ...

متن کامل

A Semi-analytical Solution for Flexural Vibration of Micro Beams Based on the Strain Gradient Theory

In this paper, the flexural free vibrations of three dimensional micro beams are investigated based on strain gradient theory. The most general form of the strain gradient theory which contains five higher-order material constants has been applied to the micro beam to take the small-scale effects into account. Having considered the Euler-Bernoulli beam model, governing equations of motion are w...

متن کامل

Plastic Flow in a Composite: A Comparison of Nonlocal Continuum and Discrete Dislocation Predictions

A two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear is considered using both discrete dislocation plasticity and a nonlocal continuum crystal plasticity theory. Only single slip is permitted in the matrix material. The discrete dislocation results are used as numerical experiments and we explore the extent to which the nonlocal crys...

متن کامل

Primary resonance of an Euler-Bernoulli nano-beam modelled with second strain gradient

In the present manuscript, the second strain gradient (SSG) is utilized to investigate the primary resonance of a nonlinear Euler-Bernoulli nanobeam is analyzed in this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017